Functional relevance of the histone gammaH2Ax in the response to DNA damaging agents.
نویسندگان
چکیده
The phosphorylation of H2Ax on its S139 site, γH2Ax, is important during DNA double-strand repair and is considered necessary for assembly of repair complexes, but its functional role after other kinds of DNA damage is less clear. We have measured the survival of isogenic mouse cell lines with the H2Ax gene knocked out, and replaced with wild-type or mutant (S139A) H2Ax genes, exposed to a range of agents with varied mechanisms of DNA damage. Knockout and mutant cells were sensitive to γ-rays, etoposide, temozolamide, and endogenously generated reactive oxygen species, each of which can include double-strand breaks among their spectra of DNA lesions. The absence or mutation of H2Ax had no influence on sensitivity to cisplatin or mitomycin C. Although UV light induced the highest levels of γH2Ax, mutation of S139 had no influence on UV sensitivity or the UV DNA damage response. Complete loss of H2Ax reduced the survival of cells exposed to UV light and reduced pChk1 induction, suggesting that sites other than S139 may impact the ATR-pChk1 pathway. The relative intensity of γH2Ax measured in Western blots in wild-type cells did not correlate with the functional importance of γH2Ax. The use of γH2Ax as a general biomarker of DNA damage is therefore potentially misleading because it is not an unambiguous indicator of double-strand breaks, and a significant fraction of DNA repair, especially involving nucleotide excision or crosslink repair, can occur without functional involvement of γH2Ax.
منابع مشابه
Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation.
This study reports a histone deacetylation-independent mechanism whereby histone deacetylase (HDAC) inhibitors sensitize prostate cancer cells to DNA-damaging agents by targeting Ku70 acetylation. Ku70 represents a crucial component of the nonhomologous end joining repair machinery for DNA double-strand breaks (DSB). Our data indicate that pretreatment of prostate cancer cells with HDAC inhibit...
متن کاملINTERACTION OF DNA WITH THE FOLDED AND UNFOLDED HISTONE HI IN THE PRESENCE OF SURFACE ACTIVE AGENTS
Interaction between DNA and histone H, was investigated in the presence and absence of sodium-n-dodecyl sulphate (SDS) and dodecyl trimethylammonium bromide (DTAB) at temperatures of 27 and 37?C, in 2.5 mM phosphate buffer, pH 6.4 by UV spectrophotometry, equilibriumdialysis and titration. The presence of 1.33 mM SDS caused histone H to fold and to further contact DNA. Binding data were use...
متن کاملLoss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome
Compelling evidence suggests that defective DNA damage response (DDR) plays a key role in the premature aging phenotypes in Hutchinson-Gilford progeria syndrome (HGPS). Studies document widespread alterations in histone modifications in HGPS cells, especially, the global loss of histone H3 trimethylated on lysine 9 (H3K9me3). In this study, we explore the potential connection(s) between H3K9me3...
متن کاملH2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR), a complex molec...
متن کاملA minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks.
UV irradiation induces histone variant H2AX phosphorylated on serine 139 (gammaH2AX) foci and high levels of pan-nuclear gammaH2AX staining without foci, but the significance of this finding is still uncertain. We examined the formation of gammaH2AX and 53BP1 that coincide at sites of double-strand breaks (DSBs) after ionizing radiation. We compared UV irradiation and treatment with etoposide, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 21 شماره
صفحات -
تاریخ انتشار 2011